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Abstract—Input design is of essential importance in system iden-
tification for providing sufficient probing capabilities to guarantee
convergence of parameter estimates to their true values. This pa-
per presents conditions on input signals that characterize their
probing richness for strongly consistent parameter estimation of
linear systems with binary-valued output observations. Necessary
and sufficient conditions on periodic signals are derived for suffi-
cient richness. These conditions are further studied under different
system configurations including open-loop and feedback systems,
and different scenarios of noises including actuator noise, input
measurement noise, and output measurement noise. In addition to
system parameter estimation, essential properties of identifiabil-
ity and input conditions are also derived when sensor thresholds
or noise distribution functions are unknown. The findings of this
paper provide a foundation to study identification of systems that
either use binary-valued or quantized sensors or involve commu-
nication channels, which mandate quantization of signals.

Index Terms—Binary-valued observation, distribution function,
identification, input design, parameter estimation, sensor thresh-
old, sufficient excitation.

I. INTRODUCTION

INPUT DESIGN is of essential importance in system identi-
fication for providing sufficient probing capabilities to guar-

antee convergence of parameter estimates to their true values,
namely, consistent estimation. Input conditions for consistent
estimation depend on sensor characteristics, system configura-
tions, noise locations and distributions, and identification algo-
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rithms. In traditional identification problems with linear sen-
sors, such conditions are collectively called persistent excita-
tion conditions. Several typical forms of persistent excitation
conditions are now standard [4], [23]. This paper studies con-
ditions and design of input signals that characterize their prob-
ing richness for consistent parameter estimation of linear sys-
tems with binary-valued output observations. We introduce suf-
ficiently rich conditions to distinguish them from traditional per-
sistent excitation conditions. These conditions are then studied
with different system configurations including open-loop and
feedback systems, and different scenarios of noises including
actuator noise, input measurement noise, and output measure-
ment noise. In addition to system parameter estimation, essential
properties of identifiability and richness conditions are also de-
rived when sensor thresholds or noise distribution functions are
unknown.

System identification of plants with binary-valued observa-
tions is of importance in understanding modeling capability
for systems with limited sensor information, establishing re-
lationships between communication resource limitations and
identification complexity, and studying sensor networks. There
are practical systems in which binary-valued sensors are much
cheaper than regular sensors, or are the only ones available [34].
Our motivation here is more toward the new paradigm of sensor
networks, networked systems and control, e-health systems for
remote monitoring, diagnosis, etc. When a signal must be sent
over a communication network, the signal must be quantized. A
quantized output measurement can be represented by a cascade
of binary-valued sensors. In other words, pursuing identifica-
tion of systems that involve communication channels will need,
as a foundation, identification and complexity analysis of the
identification problem with binary-valued sensors.

A linear plant combined with a binary-valued or quantized
sensor is a structure of Wiener systems, in which the switching
sensor represents the memoryless nonlinearity. However,
the output of such a sensor takes only a finite number of
values, and hence is inherently not invertible anywhere.
In this sense, it contains far less information about the
system output than the traditional piecewise continuously
invertible nonlinearities such as piecewise-linear functions
with nonzero slopes. Consequently, the problems studied
in this paper require methodologies that depart from most
existing methods for identifying Wiener systems. Previous
identification methodologies used for Wiener structures include
these that deal with piecewise continuous nonlinearities such
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as iterative algorithms [16], [18], correlation techniques [3],
least-squares estimation and singular value decomposition
methods [1], [21], etc. The stochastic recursive algorithms [5],
[15] can deal with switching nonlinearities with different meth-
ods and input design. Furthermore, the algorithms developed in
[28] and [29] address Wiener/Hammerstein systems with piece-
wise linear functions with jumps and dead zones. Our method
involves a two-step algorithm that consists of empirical mea-
sures followed by nonlinear mappings using distribution infor-
mation. The algorithms are uniquely designed for binary-valued
or quantized output observations with output disturbances. It
has been shown that the algorithms are asymptotically efficient,
and hence are asymptotically optimal in terms of convergence
speed [31]. Furthermore, the algorithms have been extended to
identification of Wiener systems with binary-valued observa-
tions [37], which compounds system nonlinearity with sensor
nonlinearity. This paper is focused on identification of linear
systems.

Our work along this direction was first reported in [34], where
a framework was introduced so that the identification of linear
systems with binary-valued output observations can be rigor-
ously pursued either in a stochastic setting or in a deterministic
worst-case scenario. Extensions to rational systems, unknown
noise distribution functions, quantized observations, and com-
munication resource allocations have been recently reported
in [32], [33].

This paper presents conditions on input ensembles that pro-
vide sufficiently rich probing power for convergence of parame-
ter estimates. Certain results of this paper are extensions of that
of [30], [32], and [34]. In particular, the basic sufficient con-
dition of periodic inputs for identifying finite-impulse response
(FIR) system was given in [34] and extended to rational systems
in [32]. This paper broadens the sufficient richness definition to
include also necessity, namely conditions under which the input
is not sufficiently rich. The concept of joint identifiability when
the noise distribution is unknown was introduced in [32] with-
out detailed analysis on input design or comprehensive recursive
algorithms. This paper completes input design, sufficient rich-
ness analysis, and general recursive algorithms for this problem.
Closed-loop identification problems were studied in [30] under
regular sensors. This paper is for binary-valued sensors and
covers more scenarios of system configurations and disturbance
types. It is shown that sufficient richness of inputs depends es-
sentially on system configurations, disturbance locations, and
prior information on parameters.

Classical control theory of Bode and Nyquist characterizes
systems by using periodic input signals (frequency responses).
They are relatively easy to apply, and there are many special de-
vices for obtaining system frequency responses [23], [26], [27].
This paper is focused on periodic inputs as probing inputs for
the following technical reasons. 1) Periodic inputs are uniformly
bounded. In contrast, typical stochastic identification methods
use Gaussian-distributed signals that are unbounded and more
difficult to apply in practical systems. Truncation of unbounded
signals due to input saturation may cause bias in system iden-
tification. 2) As shown in this paper, essential features for a
periodic signal to be rich for identification are certain rank con-

ditions, rather than the magnitudes of the signals. As a result,
one may use small probing inputs for identification with the ben-
efit of contained perturbation to system operations. 3) Periods
and ranks of periodic signals are shift invariant. As such, they
are natural choices for achieving “persistent identification” for
time-varying systems [30], [35]. 4) Periods and ranks of periodic
signals are invariant after passing through a linear time invari-
ant system (with some mild coprime conditions). Consequently,
an externally applied periodic signal can be easily designed for
identification of a plant in a closed-loop setting [30]. 5) As
shown in this paper, under periodic inputs identification of a
system with multiple parameters under quantized sensors can
often be reduced to a number of much simplified identification
problems for gains. 6) Under periodic inputs, our algorithms
have been shown to be asymptotically optimal [31]. This has
not been established for other probing inputs.

This paper is organized as follows. Section II begins with
a problem formulation for system identification with binary-
valued output observations and introduces the basic definition
of sufficient richness conditions under this framework. The
main results are first presented in Section III for the scenario
in which the sensor threshold and noise distribution function
are known. Characterizations of Toeplitz matrices and their
frequency-domain features are used to establish most results.
Under such input signals, causal and recursive algorithms are
derived. A key property on invariance of periodicity and rank
when a signal passes through stable systems is established in
Section IV. By applying this property, sufficient richness condi-
tions are extended to different system configurations including
open-loop and feedback systems.

Section V deals with the problem of input noises. Since input
disturbances enter the unknown plant to affect the plant out-
put, impact of input noise is technically more challenging than
output noises. It is shown that the basic method of empirical
measures can still be applied to derive convergent estimates af-
ter distributions are modified to reflect impacts from both input
and output noises.

The situation when the sensor threshold is unknown is in-
vestigated in Section VI. In this situation, the threshold itself
becomes part of unknown parameters to be identified, leading
to an augmented parameter vector of dimension n + 1. Although
identification algorithms are different in this case from those for
plants with n + 1 parameters, we show that sufficient richness
conditions are similar. Identification problems with unknown
noise distribution functions are more complicated and are inves-
tigated in Section VII. In identification algorithms that are based
on empirical measures, as is the case in binary-valued identifica-
tion problems, distribution functions must be jointly identified
with plant parameters by using certain interpolation equations.
A concept of joint identifiability is introduced to characterize
the fundamental requirement in such problems. Sufficient rich-
ness conditions for this problem and recursive algorithms are
developed.

Two illustrative examples are presented in Section VIII to
demonstrate input design, identification algorithms, and con-
vergence results of the methodologies discussed in this paper.
Finally, Section IX provides extensions and further remarks.
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Traditional system identification using linear sensors is a rel-
atively mature research area that bears a vast body of literature.
There are numerous textbooks and monographs on the sub-
ject in a stochastic or worst-case framework such as [20], [23],
and [25]. Many significant results have been obtained for iden-
tification and adaptive control involving random disturbances
in the past decades [4], [6], [14], [19], [20], [23]. The utility of
set-valued observations carries a flavor that is related to many
branches of signal processing problems. Gradient algorithms for
an adaptive filtering using quantized data were studied in [36].
One class of adaptive filtering problems that has recently drawn
considerable attention uses “hard limiters” to reduce the compu-
tational complexity. The idea, sometimes referred to as binary
reinforcement [12], employs the sign operator in the error and/or
the regressor, leading to a variety of sign-error, sign-regressor,
and sign-sign algorithms. Some recent work in this direction
can be found in [7], [9], and [10].

II. PROBLEM FORMULATION

Consider a system1

yk =
n−1∑
i=0

aiuk−i + dk , k = 1, . . .

where {dk} is a sequence of disturbances. The order n of the
system is known.

Remark 1: When one uses the FIR models, implicitly the
system is assumed to be stable. The FIR model is also suitable
for approximating exponentially stable systems that can be rep-
resented by infinite impulse response (IIR) models or rational
models. However, for unstable or marginally stable systems, FIR
or IIR models are no longer suitable. There are fundamental is-
sues of model structure selection in this case. 1) Is it reasonable
to use a low-order autoregressive (AR), autoregressive model
with exogenous inputs (ARX), or an autoregressive and moving
average (ARMA) model to represent a practical system? 2) What
are the implications of such an approximation on subsequent
control design? These issues were raised [11] and discussed in
detail in [24]. It was shown in [24] that certain classes of unstable
or marginally stable systems defy low-order AR model approxi-
mations, and general two-operator coprime factorization models
are needed if feedback stabilization of the system is required. In
other words, the ubiquitously implied parsimony principle (that
a black-box system with input–output data can be represented
by low-order models that explain data) for system modeling
may not be valid in some systems. For these systems, one must
search for high fidelity models of high orders to achieve stabi-
lizability by a feedback. Discussions on extension of our results
to coprime rational models are contained in Section IX.

The system output y is measured by a binary-valued sen-
sor with threshold C. The sensor output is represented by the
indicator function

sk = S(yk ) = I{yk ≤C } =
{ 1, if yk ≤ C

0, otherwise.
(1)

1Implicitly, uk starts at k = 2 − n. Since this is not essential for our devel-
opment, it will not be stated explicitly in what follows.

Define θ = [a0 , . . . , an−1 ]T . Then, the system input–output re-
lationship becomes

yk = φT
k θ + dk (2)

where φk = [uk , uk−1 , . . . , uk−n+1]T . Further, by using the
vector notation, for j = 1, 2, . . ., Yj = [y(j−1)n+1 , . . ., yjn ]T ∈
R

n , Φj = [φ(j−1)n+1 , . . ., φjn ]T ∈ R
n×n , Dj = [d(j−1)n+1 ,

. . ., djn ]T ∈ R
n , Sj = [s(j−1)n+1 , . . ., sjn ]T ∈ R

n , the system
output can be rewritten in a block form as

Yj = Φj θ + Dj , Sj = S(Yj ). (3)

Note that {Φj} is a sequence of n × n Toeplitz matrices ob-
tained from the input u. Under a selected input sequence u =
{. . . , u1 , u2 , . . .}, the output sk is measured for k = 1, . . . , N .
Estimates of θ will be derived from the input–output observa-
tions on uk and sk . Denote θN as an estimate of θ on the basis
of N observations on sk .

Assumption A1: The noise {dk} is a sequence of independent
indentically distributed (i.i.d.) random variables with Ed1 = 0
and σ2

d = E|d1 |2 < ∞. Its distribution function F (·) is contin-
uously differentiable with a bounded density f(·) and a contin-
uous inverse F−1(·).

Remark 2: The i.i.d. assumption on the disturbance can be
relaxed to appropriate mixing conditions, compromising only
simplicity and clarity of the identification algorithms. Our ap-
proach relies on estimating a scalar θ from the estimates of the
probability p = F (C − θu0) by inverting the distribution func-
tion. Consequently, invertibility of F−1 is required around the
point C − θu0 , not necessarily everywhere. This occurs when
the noise is uniformly distributed whose density functions will
have only a finite support. Continuity of f(·) is necessary for
establishing convergence properties.

In this paper, we derive conditions on the inputs under which
we can construct a sequence of consistent estimates of θ in the
sense of convergence with probability 1 (w.p.1.). To proceed,
we introduce the concepts of sufficient richness and information
sufficiency.

Definition 1: 1) An input sequence u = {uk} is sufficiently
rich, if under u, one can construct an estimator θN of θ from
observations on {sk , k ≤ N} such that θN → θ w.p.1 as N →
∞. 2) An input sequence u = {uk} is information insufficient,
if under u, there exist two distinct parameter vectors θ1 and
θ2 such that the corresponding output sample paths sk (θ1) and
sk (θ2) are identical for all k.

Remark 3: Note that this definition is information theoretic.
Sufficient richness ensures that the input can provide sufficient
probing capability for strong convergence under binary-valued
observations. It does not mandate a specific algorithm. On the
other hand, if a sequence is information insufficient, then one
cannot distinguish θ1 and θ2 from observing sk , regardless of
what algorithms are used. Apparently, if u is information in-
sufficient, it is not sufficiently rich. However, an information
sufficient input may not be sufficiently rich that requires strong
convergence.
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III. BASIC RICHNESS CONDITIONS UNDER OUTPUT

DISTURBANCES

We first establish some essential properties of periodic sig-
nals, which will play an important role in subsequent develop-
ment.

A. Toeplitz Matrices

Recall that an n × n Toeplitz matrix [13] is any matrix with
constant values along each (top-left to lower-right) diagonal.
That is, a Toeplitz matrix has the form

T =




vn · · · v2 v1

vn+1
. . .

. . . v2
...

. . .
. . .

...
v2n−1 · · · vn+1 vn


 .

It is clear that a Toeplitz matrix is completely determined by
its entries in the first row and the first column {v1 , . . . , v2n−1},
which is referred to as the symbol of the Toeplitz matrix.

Consider the system (3) and the infinite Toeplitz matrix Φ∞ =
[ΦT

1 ,ΦT
2 , . . .]T , which will be called the Toeplitz matrix of input

u.
Lemma 1: If the Toeplitz matrix Φ∞ of an input u is not full

rank, then u is information insufficient.
Proof: If Φ∞ is not full rank, then there exists ζ �= 0 such

that Φ∞ζ = 0. Let θ1 be the true parameter and θ2 = θ1 + ζ �=
θ1 . Then, Sj (θ1) = S(Yj (θ1)) = S(Φj θ1 + Dj ) = S(Φj θ2 +
Dj ) = Sj (θ2), j = 1, 2, . . ., which implies that u is information
insufficient. �

B. Circulant Toeplitz Matrices and Periodic Signals

T is said to be a circulant matrix if its symbol satisfies
vk = vk−n for k = n + 1, . . . , 2n − 1; see [8]. Or in terms
of the matrix entries T (i, j) of T at the ith row and jth col-
umn, T (i, 1) = T (1, n − i + 2) for i = 2, . . . , n. A circulant
matrix [22] is completely determined by its entries in the first
row [vn , . . . , v1 ], so we denote it by T([vn , . . . , v1 ]). Moreover,
T is said to be a generalized circulant matrix [22] if vk = qvk−n

for k = n + 1, . . . , 2n − 1, where q > 0, which is denoted by
T(q, [vn , . . . , v1 ]).

Definition 2: An n-periodic signal generated from its one-
period values v = (v1 , . . . , vn ) is said to be full rank if the
circulant matrix T([vn , . . . , v1 ]) is full rank.

An important property of circulant matrices is the following
frequency-domain criterion.

Lemma 2: If T = T(q, [vn , . . . , v1 ]) is a generalized cir-
culant matrix, then the eigenvalues of T are {qγk , k =
1, . . . , n}, and the determinant of T is det(T) =

∏n
k=1 qγk ,

where γk is the discrete Fourier transform (DFT) of vj q
−j/n ,

j = 1, . . . , n: γk =
∑n

j=1 vj q
−j/ne−iωk j , ωk = 2πk/n, k =

1, . . . , n. Hence, T is full rank if and only if γk �= 0, k =
1, . . . , n.

Proof: Let P =
[

0 In−1
q 0

]
, whose characteristic polyno-

mial is λn − q and eigenvalues are q1/neiωk , k = 1, . . . , n.
Then, T can be represented by T =

∑n
j=1 vjP

n−j .

For P and k = 1, . . . , n, if xk is the corresponding
eigenvector of q1/neiωk , then Txk =

∑n
j=1 vjP

n−j xk =∑n
j=1 vj (q

1
n eiωk )n−j xk = ργkxk . Therefore, qγk is an eigen-

value of T, and the expression for det(T) is confirmed. By
hypothesis, q > 0. Hence, T is full rank if and only if γk �= 0,
k = 1, . . . , n. �

For the special case when q = 1, we have the following prop-
erty.

Corollary 1: An n-periodic signal generated from v =
(v1 , . . . , vn ) is full rank if and only if its DFT γk = V (ωk ) =∑n

j=1 vj e
−iωk j is nonzero at ωk = 2πk/n, k = 1, . . . , n.

Recall that Γ = {γ1 , . . . , γn} = F [v] is the frequency sam-
ple of the n-periodic signal v, where F [·] is the DFT. Hence,
Definition 2 may be equivalently stated as “an n-periodic signal
v is said to be full rank if its frequency samples do not con-
tain 0.” In other words, the signal contains n nonzero frequency
components.

C. Basic Sufficient Richness Conditions

We use the following notation for element-wise vector func-
tions. For the distribution function F (·) and a vector x =
[x1 , · · · , xn ]T ∈ R

n , we define

F(x) = [F (x1), . . . , F (xn )]T ∈ R
n and

G(x) = [F−1(x1), . . . , F−1(xn )]T ∈ R
n . (4)

Similarly, for α = [α1 , . . . , αn ]T and c = [c1 , . . . , cn ]T in R
n ,

use I{α≤c} = [I{α1 ≤c1 }, . . . , I{αm ≤cm }]T .We use I
 and 0
 ∈ R



to denote column vectors with all components being 1 and 0,
respectively. For a given threshold C, Cn = CIn ∈ R

n . Let

ξN =
1
N

N∑
j=1

Sj and XN = G(ξN ). (5)

The sufficiency of the following theorem was first proved in [34]
although the term “sufficiently rich” was not used. The necessity,
however, is new.

Theorem 1: Under Assumption A1, suppose u is n-periodic.
Then, u is sufficiently rich if and only if u is full rank.

Proof: When u is n-periodic, we have Φ1 = Φ2 = · · · := Φ
in (3), where Φ is the circulant matrix with symbol u.

Sufficiency: By hypothesis, u is full rank. Hence, Φ is in-
vertible. An estimate of θ is defined as θN = Φ−1(Cn − XN ).
We will show that θN → θ w.p.1. We claim that limN ξN =
F(Cn − Φθ) w.p.1. To verify this, note that by the well-known
strong law of large numbers, as N → ∞, ξN − F(Cn − Φθ) =
1
N

∑N
j=1[I{Dj ≤Cn −Φθ} − F(Cn − Φθ)] → 0n w.p.1. Hence,

ξN → F(Cn − Φθ) w.p.1. Now, by the continuity of F (·)
and F−1(·), convergence of ξN implies that XN = G(ξN ) →
G(F(Cn − Φθ)) = Cn − Φθ w.p.1. It follows that as N → ∞,
θN = Φ−1(Cn − XN ) → θ w.p.1. This proves that u is suffi-
ciently rich.

Necessity: If Φ is not full rank, then Φ∞ = [ΦT ,ΦT , . . .]T is
also not full rank. By Lemma 1, u is information insufficient,
which implies that u is not sufficiently rich. �
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Fig. 1. Typical system configurations. (a) Filtering configuration. (b) Feed-
back configuration.

IV. SUFFICIENT RICHNESS CONDITIONS IN FILTERING,
REGULATION, AND TRACKING PROBLEMS

Consider some typical system configurations illustrated in
Fig. 1. Filtering configuration is an open-loop system, where
M is linear, time invariant, and stable, but may be unknown.
The feedback configuration is a general structure of 2-degree-
of-freedom controllers, where K and F are linear time invariant,
may be unstable, but are stabilizing for the closed-loop system.
The mapping from r to u is the stable system M = K/(1 +
PKF ). When K = 1, it is a regulator structure, and when F =
1, it is a servo-mechanism or tracking structure. Note that system
components M,K, and F are usually designed for achieving
other goals and cannot be tuned for identification experiment
design.

In these configurations, the input u to the plant P can be
measured, but cannot be directly selected. Only the external
input r can be designed. By Theorem 1, a sufficient condition
for u to provide sufficient richness is that u is n-periodic and
full rank. Here, we would like to establish relationships between
periodicity and rank properties of the external signal r and those
of u.

A. Invariance of Input Periodicity and Rank in Open and
Closed-Loop Configurations

Let H be a linear time invariant and stable system with im-
pulse response {hk}. Suppose that u = Hr, or in the time do-
main

uk =
∞∑

l=0

hlrk−l . (6)

Suppose that the discrete-time Fourier transform (DTFT) of H
is H(eiω ) =

∑∞
l=0 hle

−iω l .
Theorem 2: Suppose that r is n-periodic and full rank. Then,

u is also n-periodic and full rank if and only if H(eiω ) �=
0, for ω = ωk := 2πk

n , k = 1, . . . , n.
Proof: Since r is n-periodic and full rank, by Corollary 1,

the frequency samples of r are Rk =
∑n

l=1 rle
−iωk l �= 0, k =

1, . . . , n. Since r is n-periodic, it is easy to verify from (6) that
u is also n-periodic. Furthermore, the frequency samples Uk of
u are related to Rk by

Uk =
n∑

l=1

ule
−iωk l =

n∑
l=1

∞∑
t=0

htrl−te
−iωk l

=
∞∑

t=0

hte
−iωk t

n∑
l=1

rl−te
−iωk (l−t) = H(eiωk )Rk .

Fig. 2. Tracking configuration.

Here, the cyclic property of the DFT is applied: Rk =∑n
l=1 rle

−iωk l =
∑n

l=1 rl−te
−iωk (l−t) . By Corollary 1, u is full

rank if and only if Uk �= 0, k = 1, . . . , n. However, by hypoth-
esis, Rk �= 0, k = 1, . . . , n. As a result, Uk �= 0 if and only if
H(eiωk ) �= 0, k = 1, . . . , n. �

Example 1: The necessity of the condition of Theorem 2 can
be verified by examining the following second-order system
uk = rk + rk−1 . When r is a 2-periodic signal and full rank, uk

is a constant, and hence is not rank 2. This is due to the fact that
H(eiω ) = 1 + eiω and for ω = ω1 = 2π/2 = π, H(eiω1 ) = 0.

Remark 4: Theorem 2 claims that, for any system H that does
not have annihilating zeros at n points eiωk , ωk = 2πk

n , k =
1, . . . , n, on the unit circle, sufficient richness capability of the
signal r, established by Theorem 1, is always preserved after
passing through H . In particular, for the feedback configuration
in Fig. 1, we have the following result that indicates that input
richness properties are invariant under a feedback mapping.

Assumption A2: Consider the feedback configuration
Fig. 1(b). Assume that, for ωk = 2πk

n , k = 1, . . . , n, K(eiω )
does not have zeros at ωk ; and P (eiω ) and F (eiω ) do not have
singularities (such as poles) at ωk .

Corollary 2: Under Assumption A2, M = K/(1 + PKF )
does not have annihilating zeros at ωk = 2πk

n , k = 1, . . . , n. As
a result, if r is n-periodic and full rank, so is u.

Proof: From M(eiω ) = K (ei ω )
1+P (ei ω )K (ei ω )F (ei ω ) , it is clear that

the zeros of M are either the zeros of K or the singularities
(such as poles) of P or F . By Assumption A2, K(eiωk ) �= 0,
and ωk is not a singularity point of P (eiω ) or F (eiω ). Hence,
M(eiωk ) �= 0, k = 1, . . . , n. Now by Theorem 2, u is n-periodic
and full rank whenever r is n-periodic and full rank. �

B. Periodically Perturbed Input Signals

Consider the tracking configuration in Fig. 2. When the de-
sired output is r0 , usually r = r0 is the set point. However, a con-
stant r0 �= 0 is 1-periodic. It is only good for identification of a
gain system (namely, n = 1). To enhance the probing capability,
one may add a small dither wk to r0 , leading to rk = wk + r0 .
Since uk = Mrk = Mwk + Mr0 = vk + ek , where vk is an
n-periodic signal and ek = Mr0 becomes a constant µ af-
ter a short transient. We need to establish rank conditions
on uk .

Generally, consider an input signal u: uk = vk + ek , which
is a perturbation from v. Suppose that vk is n-periodic and full
rank. We would like to establish conditions under which uk is
also n-periodic and full rank.

Assumption A3: Both v and e are n-periodic.
Under Assumption A3, the Toeplitz matrices for v, e, and

u, denoted by Φv , Φe , and Φu , respectively, are circulant
matrices. Let their corresponding frequency samples be
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Γu = F [u] = {γu
k , k = 1, . . . , n}, Γv = F [v] = {γv

k , k =
1, . . . , n}, Γe = F [e] = {γe

k , k = 1, . . . , n}.
Theorem 3: Under Assumption A3, u is full rank if and only

if γv
k + γe

k �= 0, k = 1, . . . , n.
Proof: This follows immediately from the fact γu

k = γv
k + γe

k ,
and that Φu is full rank if and only if its frequency samples do
not contain 0. �

We now consider the special case when ek ≡ µ,
which is a typical case in tracking problems, as shown
before.

Corollary 3: Suppose vk is n-periodic and full rank, and
ek = µ. Then, uk is n-periodic. Let η = 1

n

∑n
j=1 vj . u is full

rank if and only if µ �= −η.
Proof: Since vk is full rank, by Corollary 1, we have γv

k �=
0, k = 1, . . . , n. In particular, γv

n =
∑n

j=1 vj = nη. Moreover,
the frequency samples of ek ≡ µ are γe

k = 0, k = 1, . . . , n −
1, and γe

n = nµ. Consequently, by Theorem 3, uk is full rank
if and only if γv

n + γe
n �= 0. That is, nη + nµ �= 0, or µ �= −η,

as claimed. �
Corollary 3 may be verified directly by matrix manipulations.

Toeplitz matrices Φu , Φv , and Φe for u, v, and e, respectively,
are

Φu = Φv + Φe

∼




nη + nµ 0 · · · 0

v1 + µ vn − v1
. . . v2 − v1

...
. . .

. . .
...

vn−1 + µ vn−2 − vn−1 · · · vn − vn−1




by adding the second through nth rows to the first row, followed
by subtracting the first column from the second to nth columns.
The last matrix is full rank since η + µ �= 0, and the lower-right
(n − 1) × (n − 1) submatrix, which is obtained by elementary
operations from Φv , is full rank.

V. SUFFICIENT RICHNESS CONDITIONS UNDER INPUT NOISES

Under the system configurations in Fig. 1, u = Mr is gener-
ated from r by a possibly unknown system M . In the previous
sections, u is assumed to be accurately measured. When u is fur-
ther corrupted by noise, it can no longer be exactly measured.
Furthermore, the actual values of u cannot be directly derived
from r since M is unknown. Sufficient richness conditions and
identification algorithms under this scenario will be explored in
this section.

We will consider the following two cases of input noises
shown in Fig. 3.

1) Input measurement noise: When u is measured by a
regular sensor, the measured values are related to u by
wk = uk + εk , where εk is the measurement noise.

2) Actuator noise: In this case, the actual input to the plant
is uk = vk + ek , where vk = Mr and ek is the actuator
noise.

As a result, the measured input is wk = vk + ek + εk , and
the identification of the plant must be performed from wk and
sk = S(yk ).

Fig. 3. Input noise configuration.

Assumption A4: {vk} is n-periodic and full rank. {ek}
and {εk} are sequences of i.i.d. random variables with zero
mean and finite variances such that {ek} and {εk} are
independent.

Denote the n × n Toeplitz matrices for w and v by

Φw
l =




wln wln−1 · · · wln−n+1

wln+1 wln
. . . wln−n+2

...
. . .

. . .
...

wln+n−1 wln+n−2 · · · wln




Φv =




vn vn−1 · · · v1

v1 vn
. . . v2

...
. . .

. . .
...

vn−1 vn−2 · · · vn


 .

Although Φw
l is not circulant and varies with l, the limit of their

averages is a full rank circulant matrix.
Lemma 3: Under Assumption A4,

∑N
l=1 Φw

l /N → Φv w.p.1
as N → ∞.

Proof: This follows directly from the strong law of large
numbers, applied to each element of the matrices. �

A. Measurement Noise

We consider first the case of measurement noise only. In other
words, ek = 0, for all k. Hence, uk = vk , wk = uk + εk , and
Φu = Φv := Φ. Due to the measurement noise, the actual uk is
unknown. As a result, Φ is unknown and cannot be used directly
in identification algorithms. However, by Lemma 3, it can be
estimated asymptotically by averaging. The following algorithm
utilizes this idea to estimate θ.

Recall that if Φ is known, a consistent estimate of θ is
θN = Φ−1(Cn − G(ξN )), where ξN = 1/N

∑N
j=1 Sj . This

estimator is not causal since it employs the unknown Φ in com-
puting θN . In other words, one needs the future information on
the sequence {wk} in computing θN . The following algorithm
replaces the future information Φ by a sample average.

Recall that ξN was defined in (5), and let ΦN =
1
N

∑N
l=1 Φw

l . When ΦN is nonsingular, define θN = Φ−1
N (Cn −

G(ξN )).This estimator can be recursively defined as follows.
1) Initial conditions: ξ1 = S1 , Φ1 = Φw

1 is generated from
initial data on w, θ1 = 0.

2) Recursion: Suppose that at N , ξN , ΦN , and θN have been
obtained. Then, at N + 1, we update

ξN +1 = ξN − 1
N + 1

ξN +
1

N + 1
SN +1

ΦN +1 = ΦN − 1
N + 1

ΦN +
1

N + 1
Φw

N +1
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θN +1 =
{

Φ−1
N +1(Cn − G(ξN +1)), if ΦN+1 is nonsingular

θN , if ΦN+1 is singular.

Theorem 4: Under Assumption A4, θN → θ w.p.1 as N →
∞.

Proof: Since the true input to the plant is u, ξN → ξ =
F(Cn − Φθ) w.p.1. Then, θN − θ = Φ−1

N (G(ξ) − G(ξN )) +
(Φ−1

N − Φ−1)(Cn − G(ξ)). By the strong law of large numbers,
the convergence θN − θ → 0 follows from ΦN → Φ, ξN → ξ
w.p.1, continuity of F−1 , and the invertibility of Φ. �

B. Actuator Noise

Unlike the measurement noise εk that affects measured input
values but does not enter the plant, actuator noise ek affects the
output of the plant yk . Now, consider the case uk = vk + ek

and wk = uk . To understand the impact of ek , we express the
regressor in (2) by φu

k or φv
k , depending on which signal is

used in the regressor. Under Assumption A4, v is n-periodic
and full rank, but u is not periodic. However, by Lemma 3,
1
N

∑N
j=1 Φu

j → Φv w.p.1 as N → ∞.

Since uk = vk + ek , we have yk = (φu
k )T θ + dk =

(φv
k )T θ + (φe

k )T θ + dk = (φv
k )T θ + zk . Observe that

the equivalent noise zk is zk = (φe
k )T θ + dk =

a0ek + · · · + an−1ek−n+1 + dk . Under Assumption A4,
although {zk} may not be independent, it is strictly stationary.
Recall that {zk} is strictly stationary if for any positive integer
ν, points t1 , . . . , tν ∈ Z+ and l ∈ Z+ , the joint distribution of
{zt1 , . . . , ztν

} is the same as that of {zt1 + l , . . . , ztν + l} (i.e.,
its finite dimensional distributions are translation invariant; see
[17, p. 443]). Denote the distribution function by Fz (x; θ).
A moment of reflection reveals that the sequence is (n − 1)-
dependent. A precise definition of (n − 1)-dependence can be
found in [2, p. 167, Example 1]. Since an (n − 1)-dependent
sequence belongs to the class of φ-mixing signals, whose
remote past and distant future are asymptotically independent,
the sequence is strongly ergodic [17, p. 488]. That is, a strong
law of large numbers still holds.

Following (5), define ξN = 1/N
∑N

j=1 Sj . Let θN be the
solution to

ξN = Fz (Cn − ΦθN ; θN ). (7)

For any ϑ, define the Jacobian matrix J(ϑ) = ∂Fz (Cn −Φϑ ;ϑ)
∂ϑ . A

condition for invertibility of the function in (7) is that J(θN ) is
full rank. In this case, by denoting the inverse of ξ = Fz (Cn −
Φϑ;ϑ) as ϑ = H(ξ), the estimate θN in (7) may be symbolically
written as θN = H(ξN ).

Proposition 1: If H(·) exists and is continuous, then θN → θ
w.p.1.

Proof: By the strong law of large numbers, ξN → ξ =
Fz (Cn − Φθ; θ) w.p.1. Since H(·) exists and is continuous,
θN = H(ξN ) → H(ξ) = θ w.p.1. �
For a given ϑ, denote the inverse of Fz (x;ϑ) (with respect to x)
by

Gz (x;ϑ) = F−1
z (x;ϑ). (8)

Computationally, it is observed that, for a given ξ, the implicit
function ξ = Fz (Cn − Φϑ;ϑ) of ϑ may be expressed as a fixed-
point equation ϑ = Φ−1(Cn − Gz (ξ;ϑ)).

Next, a special case will be considered when {ek} and {dk}
are both normal random variables. Suppose that {ek} is a se-
quence of i.i.d. normal random variables with zero mean and
variance σ2

e , and {dk} is a sequence of i.i.d. normal ran-
dom variables with zero mean and variance σ2

d . Then, z =
a0ek + · · · + an−1ek−n+1 + dk is also normally distributed,
has zero mean and variance σ2

z (θ) = (a2
0 + · · · + a2

n−1)σ
2
e +

σ2
d = σ2

e ‖θ‖2 + σ2
d .

Let F0(x) be the normal distribution function of zero mean
and variance one. Then, Fz (x;ϑ) = F0(x/σz (ϑ)). It follows
that Fz (Cn − Φϑ;ϑ) = F0 (Cn − Φϑ/σz (ϑ)) , and the Jaco-
bian matrix is

J(ϑ) =
dFz (Cn − Φϑ;ϑ)

dϑ

= − 1
σz

dF0

dx

[
Φ(In − σ2

e ϑϑT

σ2
z

) +
σ2

e CnϑT

σ2
z

]

where x = Cn − Φϑ/σz (ϑ). Since (d/dx)F0 = diag(fz (C −
φT

1 ϑ), . . . , fz (C − φT
n ϑ)) is full rank, where fz is the density

function of Fz , the Jacobian matrix J(ϑ) is full rank if and only
if Φ(In − σ2

e ϑϑT /σ2
z ) + σ2

e CnϑT /σ2
z is full rank.

In the following derivations, the norms of matrices and vec-
tors are: for matrix A ∈ R

n×n and vector x ∈ R
n , ‖A‖ =√

λmax(AT A), where λmax(·) is the largest eigenvalue of the
matrix; and ‖x‖ =

√∑n
i=1 |xi |2 . It is obvious that for a vector

ϑ, ‖ϑϑT ‖ = ϑT ϑ.
Remark 5: It is easily verified that if A is an n dimension

matrix with ‖A‖ < 1, then In + A is invertible, where In de-
notes the n × n identity matrix. Moreover, suppose A is an n
dimension invertible matrix. If ‖B‖ < ‖A−1‖−1 , then A + B is
invertible.

Theorem 5: If

‖Φ−1‖ <
2σ3

d

Cσe
√

n(σ2
e ‖θ‖2 + σ2

d )
(9)

then θN = H(ξN ) → θ w.p.1.
Proof: Noting that

∥∥σ2
e θθT/(σ2

z

∥∥)=
∥∥σ2

e θθT/(σ2
e θT θ+σ2

d

)
‖

= σ2
e θT θ/(σ2

e θT θ + σ2
d ) < 1, by Remark 5, In − σ2

e θθT /
σ2

z is full rank. Since
∣∣∣∣σ2

e CnθT /σ2
z

∣∣∣∣ ≤
σ2

e ‖Cn‖‖θ‖/(σ2
e θT θ + σ2

d ) ≤ σ2
e C

√
n‖θ‖/(2σeσd‖θ‖) =

σeC
√

n/(2σd), we have
∣∣∣∣σ2

e CnθT /σ2
z

(
In − σ2

e θθT /

σ2
z

)−1∣∣∣∣ =
∣∣∣∣ σ2

e CnθT /σ2
z

∑∞
i=0(σ2

e θθT /σ2
z )i

∣∣∣∣ < ‖Φ−1‖−1 .

By Remark 5, Φ + σ2
e CnθT /σ2

z

(
In − σ2

e θθT /σ2
z

)−1
is invert-

ible. Then, Φ
(
In − σ2

e θθT /σ2
z

)
+ σ2

e CnθT /σ2
z is invertible.

So, J(θ) is invertible. Hence, Proposition 1 confirms that
θN → θ w.p.1. �

Remark 6: Condition (9) can be used to design input sig-
nals. Indeed, suppose that the prior information on the un-
known parameters is that ‖θ‖ ≤ β. By using β2 in place of
‖θ‖2 , one can design an input such that Φ satisfies (9). Conse-
quently, consistency of the estimates will be guaranteed for any
θ ∈ {ϑ : ‖ϑ‖ ≤ β}.
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Fig. 4. Relative errors of parameter estimates.

Example 2: Suppose the true system is yk = 0.9 uk +
1.1uk−1 + dk . Hence, the true parameters are θ = [0.9, 1.1]T

and ‖θ‖2 = 1.93. Assume that the prior information on θ is that
‖θ‖2 ≤ 2. The output measurement noise dk is i.i.d., normally
distributed with zero mean and variance σ2

d = 4. The input sig-
nal uk = vk + ek , where vk is two-periodic with its one-period
values µ1 = 3, µ2 = 15, and ek is an i.i.d. normally distributed
noise of zero mean and variance σ2

e = 1. By direct calcula-
tion, ‖Φ−1‖ = 0.083. For C = 20, and the prior information
‖θ‖2 ≤ 2, the right-hand side of (9) is 0.094. Hence, the input
satisfies condition (9). In fact under this input, (9) is satisfied
for all θ ∈ {ϑ : ‖ϑ‖2 ≤ 2}.

An identification algorithm is devised for this example. At
each step N , ξN is calculated from (5). Then the estimate θN

is derived by solving (7). The inverse function of normal dis-
tribution is calculated by the Matlab function norminv. The
simulation illustrates the convergence of parameter estimates.
The relative estimation error ‖θN − θ‖/‖θ‖ is used to evalu-
ate accuracy and convergence of the estimates. Fig. 4 shows
parameter convergence of this algorithm.

VI. SUFFICIENT RICHNESS: UNKNOWN THRESHOLD C

The main relationship in computing estimates is the n limiting
equations of empirical measures ξ = F(Cn − Φθ). When C is
unknown, this relationship is not sufficient to determine θ and C,
since it has n equations but n + 1 unknowns. We introduce the
following modified algorithm to estimate C and θ collectively.

We will use the configuration of Fig. 3 to carry out our dis-
cussions: The input is subject to measurement noise (no input
actuator noise), and the output has measurement noise, namely
uk = vk , wk = uk + εk , and yk = φT

k θ + dk , where dk satis-
fies Assumption A1. Other cases can be similarly derived and
will not be detailed here.

A. Sufficient Richness Conditions

Assumption A5: Suppose that {vk} is (n + 1)-periodic and
full rank, and that {εk} is an i.i.d. and zero mean sequence.

From yk = φT
k θ + dk , k = 1, 2, . . ., define Ỹj = [y(j−1)

(n+1)+1 . . . , yj (n+1)]T ∈ R
(n+1) , Φ̃j = [φ(j−1)(n+1)+1 , . . . ,

φj (n+1)]T ∈ R
(n+1)×n , D̃j = [d(j−1)(n+1)+1 , . . . , dj (n+1)]T ∈

R
(n+1) , S̃j = [s(j−1)(n+1)+1 , . . . , sj (n+1)]T ∈ R

(n+1) . Then,

Ỹj = Φ̃j θ + D̃j , for j = 1, 2, . . .. Note that {Φ̃j} is a sequence
of (n + 1) × n matrices, generated from u. Due to measurement
noise, the actual uk is unknown and only wk can be used in
algorithms. Define ξ̃N = 1

N

∑N
j=1 S̃j , Ψ̃w

N = 1
N

∑N
j=1 Φ̃w

j ,
where

Φ̃w
l =




wl(n+1) wl(n+1)−1 · · · wl(n+1)−n+1

wl(n+1)+1 wl(n+1)
. . . wl(n+1)−n+2

...
. . .

. . .
...

wl(n+1)+n wl(n+1)+n−1 · · · wl(n+1)+1


 .

Under Assumption A5, Ψ̃w
N → Ψ̃ w.p.1, where

Ψ̃ =




vn+1 vn . . . v2

v1 vn+1
. . . v3

...
. . .

. . .
...

vn vn−1 . . . v1


 .

Define Ψ
w
N = [In+1 ,−Ψ̃w

N ] and Ψ = [In+1 ,−Ψ̃]. Note that Ψ
is an (n + 1) × (n + 1) matrix.

Lemma 4: 1) Under Assumption A5, Ψ is full rank. 2)
Conversely, if vk is (n + 1)-periodic but not full rank, and
β =

∑n+1
j=1 vj �= 0, then Ψ is not full rank.

Proof: 1) Ψ̃ is the first n columns of the (n + 1) × (n +
1) circulant matrix T = T([vn+1 , . . . , v1 ]). Since {vj , j =
1, . . . , n + 1} is full rank, T is full rank and β =

∑n+1
j=1 vj �= 0.

Adding the first n columns to the last column, transferring the
last column to be the first one, and dividing the first column by
β, result in

T ∼




vn+1 vn · · · v2 β
v1 vn+1 · · · v3 β
...

. . .
. . .

. . .
...

vn vn−1 · · · v1 β




∼




β vn+1 vn · · · v2

β v1 vn+1
. . . v3

...
. . .

. . .
. . .

...
β vn vn−1 · · · v1


 ∼ Ψ. (10)

This implies that Ψ is full rank.
2) Conversely, if vk is not full rank, T is not full rank. Since

β =
∑n+1

j=1 vj �= 0, (10) is valid. It follows that Ψ is not full
rank. �

By Lemma 4, under Assumption A5, Ψ is invertible. De-
fine an augmented parameter vector Θ = [C, θT ]T . Let ΘN =
(Ψ

w
N )−1G(ξ̃N ),where G(x) = F−1(x) is defined in (4).
Theorem 6: 1) Under Assumptions A1 and A5, ΘN → Θ

w.p.1 as N → ∞. This implies that v = {vk} is sufficiently
rich. 2) Conversely, if vk is (n + 1)-periodic but not full rank,
and β =

∑n+1
j=1 vj �= 0, then vk is not sufficiently rich.
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Proof: 1) Recall that Ψ
w
N = [11n+1 ,−Ψ̃w

N ]. Under Assump-
tion A5, Ψ

w
N → Ψ w.p.1. Under Assumption A1, by the strong

law of large numbers, ξ̃N → ξ̃ = F(ΨΘ) w.p.1 as N → ∞.
This implies, by continuity of F−1(·), G(ξ̃N ) → ΨΘ w.p.1 as
N → ∞. As a result, by Lemma 4, ΘN = (Ψ

w
N )−1G(ξ̃N ) → Θ

w.p.1 as N → ∞.
2) Under the hypothesis, by Lemma 4, Ψ is not full

rank. Hence, there exists δ �= 0 such that Ψδ = 0. Sup-
pose C1 and θ1 are true parameters, and [C2 , θ

T
2 ]T =

[C1 , θ
T
1 ]T + δ. Then, yk (θ1) = φT

k θ1 + dk ≤ C1 iff yk (θ2) =
φT

k θ2 + dk ≤ C2 ∀k. It follows that the output sequences sat-
isfy sk (C1 , θ1) = sk (C2 , θ2). In other words, vk is information
insufficient, which implies that vk is not sufficiently rich. �

B. Recursive Algorithms

A causal and recursive algorithm for computing ΘN can be
constructed as follows.

1) Initial conditions: ξ̃1 = S̃1 , Ψ̃1 = Φ̃w
1 , and Θ1 = 0.

2) Recursion: Suppose that at N , ξ̃N , Ψ̃w
N , and ΘN =

[CN , θT
N ]T have been obtained. Then, at N + 1, we update

ξ̃N +1 = ξ̃N − 1
N + 1

ξ̃N +
1

N + 1
S̃N +1

Ψ̃w
N +1 = Ψ̃w

N − 1
N + 1

Ψ̃w
N +

1
N + 1

Φ̃w
N +1

Ψ
w
N +1 = [11n+1 ,−Ψ̃w

N +1]

ΘN +1 =
{

ΘN , if Ψ
w
N +1 is singular

(Ψ
w
N +1)

−1G(ξ̃N +1), otherwise.

The following theorem claims convergence of ΘN , whose proof
is similar to that of Theorem 4 and is omitted.

Theorem 7: Under Assumptions A1 and A5, ΘN → Θ w.p.1
as N → ∞.

VII. SUFFICIENT RICHNESS: UNKNOWN DISTRIBUTION

FUNCTION

The identification algorithms and sufficient richness condi-
tions derived so far rely on the knowledge of the distribution
function F (·) or its inverse. However, in most applications, the
noise distributions are not known, or only limited information is
available. On the other hand, input–output data from the system
contain information about the noise distribution. Hence, F (·)
can be potentially estimated, together with system parameter
θ. In this section, we will derive sufficient richness conditions
under which θ and F can be jointly identified. This problem and
the concept of joint identifiability were first introduced in [32],
together with the basic sufficient conditions for identifiability, a
recursive algorithm, and its convergence. The input design and
its sufficient richness presented in this section are new.

A. Parametrization of F

To estimate the distribution function F (x), one needs interpo-
lation equations in the form of ξi = F (xi), for i = 1, 2, . . . , L.
When F (·) is not parameterized, estimation on F can become

sufficiently accurate only if the data points {xi} are sufficiently
dense, rendering an estimation problem of high complexity.
Here, we adopt a parametrization approach for F (·).

Suppose that F (x) is parameterized by a vector α of di-
mension m. To emphasize this parametrization, F will be
written as F (x;α). For example, for normal distributions,
α = [µ, σ2 ]T . Given a set of L points XL = [x1 , . . . , xL ]T ,
suppose that interpolation values of the distribution at these
points are pl = F (xl ;α), l = 1, . . . , L. Define F(XL ;α) =
[F (x1 ;α), . . . , F (xL ;α)]T and PL = [p1 , . . . , pL ]T . Hence,
the interpolation relationship for the given data pair (XL,PL )
can be written as PL = F(XL ;α).

Assumption A6: The function F (x;α) has continuous partial
derivatives with respect to both variables x and α.

Definition 3: F (x;α) is said to be jointly identifiable if for
any set of m + 1 nonzero distinct points ρ = [ρ1 , . . . , ρm+1]T ,
F(Cm+1 − ρa;α) is invertible as a function of a (a scalar) and
α.

Jointly identifiable functions guarantee that there is a unique
solution a and α to the equation ξ = F(Cm+1 − ρa;α). Joint
identifiability is an essential property. Otherwise, the parame-
terized distribution function F (x;α) and θ may not be uniquely
determined from interpolation equations, which are the founda-
tion of system identification with binary-valued observations.
The following example highlights the main reasons for this
property.

Example 3: Let F0(x) be the distribution function of the stan-
dard normal random variable (with zero mean and variance 1).
Then, a normal random variable with mean µ, variance σ2 , and
distribution function F (x), can be expressed as F (x; [µ, σ]) =
F0 (x − µ/σ) . Suppose that the system is yk = auk + dk ,
k = 1, 2, . . . , namely, a gain system with unknown param-
eter a. Then, F (C − auk , [µ, σ]) = F0(C − auk − µ)/σ =
F0(c1 − c2uk ), where c1 = (C − µ)/σ and c2 = a/σ. Since
this is a two-parameter function, one cannot identify three pa-
rameters a, µ, and σ uniquely, regardless of how many interpo-
lation points uk are used.

The main issue here is that, although the class of distribu-
tion functions is uniquely parameterized by [µ, σ], when they
are combined with unknown parameters of the system, the pa-
rameter set (θ, α) is not identifiable from input–output rela-
tionships, motivating the notion of joint identifiability. A rem-
edy of this situation will require acquisition of partial infor-
mation on the distribution function to reduce the dimension
of its parameter vector. For example, if µ is known as µ0 ,
then the class of distribution functions F (x;σ) = F0

(
x−µ0

σ

)
can be shown to be jointly identifiable. Indeed, take any
u1 �= u2 . Let ξi = F0(c − aui − µ0)/σ, i = 1, 2. Then, xi =
F−1

0 (ξi) = (c − aui − µ0)/σ, i = 1, 2, which have a unique so-
lution since u1 �= u2 . Similarly, if σ = σ0 is known, F (x;µ) =
F0(x − µ)/σ0 is jointly identifiable.

B. Sufficient Richness Conditions

For notational simplicity, we shall use the basic configuration
yk = φT

k θ + dk for developing algorithms, where uk is periodic
and has no input disturbance. Other cases can be readily derived
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from the same principles of these algorithms. Suppose that the
threshold C is known. First, we derive a special class of inputs
u that will provide sufficient probing capability to identify both
θ and α.

Definition 4: A 2n(m + 1)-periodic signal u is called
a scaled full rank signal if its one-period values are
(v, v, ρ1v, ρ1v, . . . , ρm v, ρm v), where v = (v1 , . . . , vn ) is full
rank, i.e., 0 �∈ F [v], and ρj �= 0 and ρj �= 1, j = 1, . . . , m, and
ρi �= ρj , i �= j. Let U denote the class of such signals.

Let ξN be defined as in (5), with the dimension changed from
n to 2n(m + 1). By the strong law of large numbers

ξN → ξ = F(C2n(m+1) − Φ̃θ;α) w.p.1 as N → ∞ (11)

for some 2n(m + 1) × n matrix Φ̃. Partition Φ̃ into 2(m + 1)
submatrices of dimension n × n, Φ̃ = [ΦT

1 , ΦT
2 , . . ., ΦT

2(m+1)]
T .

If u ∈ U , it can be directly verified that Φ1 is the n × n circulant
matrix of symbol v, Φ1 = T([vn , · · · , v1 ]), and the odd-indexed
block matrices are expressed as Φ3 = ρ1Φ1 , . . . ,Φ2m+1 =
ρm Φ1 . The even-indexed block matrices, which will not be
used in the proof, are Φ2l = ρl−1T( ρl

ρl−1
, [vn , . . . , v1 ]),where

l = 1, . . . ,m + 1 and ρ0 = ρm+1 = 1.
Under this input, the limit ξ in (11) for the system yk =

φT
k θ + dk , sk = S(yk ) contains the following equations by ex-

tracting the odd-indexed blocks ξ2j+1 = F(Cn − ρjΦ1θ;α)
for j = 1, . . . ,m. We now show that these equations are suffi-
cient to determine θ and α uniquely.

Theorem 8: Suppose that u ∈ U , and F (x;α) satis-
fies Assumption A6 and is jointly identifiable. Then, ξ =
F(C2n(m+1) − Φ̃θ;α) has a unique solution θ∗ and α∗.

Proof: Consider the first block Φ1θ of Φ̃θ. Since v is full rank,
Φ1 is a full rank matrix. It follows that, for any θ, Φ1θ �= 0n .
Without loss of generality, suppose that the νth element δ of Φ1θ
is nonzero. By construction of Φ̃, we can extract the following
m + 1 nonzero elements from Φ̃θ: the (2nl + ν)th element,
l = 0, . . . ,m, is ρlδ. Extracting these rows from the equation
ξ = F(C2n(m+1) − Φ̃θ;α) leads to a set of m + 1 equations
that will be denoted by

ξ0 = F(Cm+1 − ρδ;α) (12)

where ρ = [1, ρ1 , . . . , ρm ]T . Since δ �= 0 and Π has distinct
elements, C(m+1) − ρδ has distinct elements. By hypothesis,
F (x;α) is jointly identifiable. It follows that (12) has a unique
solution δ∗ and α∗. Now, using the already obtained α∗, let the
first n equations of ξ = F(C2n(m+1) − Φ̃θ;α) be denoted by
ξ1 = F(Cn − Φ1θ;α∗). By Assumption A6, G(x;α∗) exists.
As a result, θ∗ = Φ−1

1 (Cn − G(ξ1 ;α∗)) is the unique solution.
This completes the proof. �

C. Exponentially Scaled Signals

A particular choice of the scaling factors ρj is ρj = qj , j =
1, . . . ,m for some q �= 0 and q �= 1. In this case, the period of
input u can be shortened to n(m + 1) under a slightly different
condition.

Definition 5: An n(m + 1)-periodic signal u is called an
exponentially scaled full rank signal if its one-period values are
(v, qv, . . . , qm v), where q �= 0 and q �= 1, and v = (v1 , . . . , vn )

satisfies that Φ = T(q, [vn , · · · , v1 ]) is full rank. We use Ue to
denote this class of input signals.

Let ξN be defined as in (5), with dimension changed
from n to n(m + 1). By the strong law of large numbers,
ξN → ξ = F(Cn(m+1) − Φ̃θ;α) w.p.1, as N → ∞, for some

(n(m + 1)) × n Toeplitz matrix Φ̃. Partition Φ̃ into (m + 1)
submatrices of dimension n × n, Φ̃ = [ΦT

1 ,ΦT
2 , . . . ,ΦT

m+1]
T .

If u ∈ Ue , then it can be directly verified that Φ1 = Φ is the
n × n generalized circulant matrix defined in Definition 5 and
Φl = ql−1Φ1 , l = 2, . . . , m + 1. We have the following result,
whose proof is similar to that of Theorem 8 and is omitted.

Theorem 9: Suppose that u ∈ Ue , and F satisfies Assumption
A6 and is jointly identifiable. Then, ξ = F(Cn(m+1) − Φ̃θ;α)
has a unique solution θ∗ and α∗.

D. Recursive Algorithms

A recursive algorithm for computing estimates of θ and α
can be constructed as follows. For notational simplicity, the
dimensions of the matrices, which will become clear from con-
text, are suppressed. Recall that, for any fixed α, G(·;α) is the
inverse of F (·;α). For a fixed ϑ and a fixed ξ, starting from
α0 , we wish to construct estimates of α by solving a nonlinear
least-squares problem minα (ξ − F(C − Φϑ;α))T (ξ − F(C −
Φϑ;α)). Nevertheless, we do not really have a fixed constant ξ.
Rather it is a sequence of empirical measures. Thus, the problem
is not purely deterministic, but involves random processes.

In what follows, we outline a recursive algorithm with multi-
ple levels of updates. There are several estimates involved. First,
we still use the empirical measures since the binary data are the
only measurements available. Second, we construct a stochastic
algorithm for recursively estimating α. Third, we carry out an
inversion to obtain an estimate of θ. Taking into consideration
the frequencies of updates, it appears to be more productive that
we do not perform the inversion at every iteration. This is the
rationale for using a two-level procedure.

To begin, for a sequence {πk} (real numbers, or vectors, or
matrices with appropriate dimensions), denote π
N

k = π
N +k .
The procedure consists of inner and outer iterations. In the inner
iteration, we update the estimates of the empirical measures as
well as that of α; in the outer loop, we update θN that is kept
as a constant during the inner iteration. For the inner iterations,
we also solve an optimization of the form minα K(ϑ, α) =
E(ξ
N

k − F(C − Φϑ;α))T (ξ
N
k − F(C − Φϑ;α)), k < N .

Note that the expectation is not available. Instead we use its
noise-corrupted observed values (∂/∂α)K(ξ
N

k , ϑ, , α).2

The construction of the estimates are recursive. Suppose that
(ξ
N

k , θ
N
k , α
N

k ) has been constructed. Then, the recursion is
defined by the following algorithm

ξ
N
k+1= ξ
N

k − 1

N + k + 1

ξ
N
k +

1

N + k + 1

S
N
k+1 , k < N

α
N
k+1 = α
N

k + β
N
k

∂K(ξ
N
k , θ
N

k , α
N
k )

∂α
, k < N

2For simplicity, we assume that the partial derivatives can be observed. Oth-
erwise, we can use the finite difference to approximate the gradient.
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θ
N
k+1 = θ
N

k , k < N − 1

θ
N
N +1 = (Φ̃T Φ̃)−1Φ̃T (Cn(m+1) − x̂
N

N )

x̂
N
N = G(ξ
N

N ;α
N
N ). (13)

In the algorithm above, {βk} is a sequence of step-sizes satis-
fying βk ≥ 0, βk → 0 as k → ∞, and

∑
k βk = ∞.

As demonstrated in the previous sections, a sufficient condi-
tion for the sequence of empirical measures to converge is the
ergodicity. Thus, we simply assume that {ξk}, the sequence of
empirical measures is stationary and ergodic. Suppose also that
for each ε, the function K(ε, α) has a unique minimizer α. Then,
using the ordinary differential equation (ODE) methods [20], we
can show that α
N

k → α w.p.1 as N → ∞. The results in the
previous section reveal that ξ
N

k also converges. Finally, similar
to the previous sections, the inversion leads to θ
N

k → θ w.p.1 as
desired.

VIII. ILLUSTRATIVE EXAMPLES

In this section, we will use two examples to demonstrate the
algorithms developed in this paper. Example 4 illustrates the
case when the switching threshold is unknown. It shows that
when the input is n + 1 full rank, both the threshold C and
system parameters θ can be estimated simultaneously. Example
5 covers the scenario of unknown noise distributions. The input
design and joint identification algorithms are shown to lead to
consistent estimates.

Example 4: Suppose that the threshold C is unknown and
the input has measure noise. Consider a third-order sys-
tem: yk = φT

k θ + dk , where the output is measured by a
binary-valued sensor with unknown threshold C. Suppose
that the true parameters are C = 28 and θ = [2.1, 2.7, 3.6]T ,
{dk} is a sequence of i.i.d. normal variables with mean
zero and variance σ2

d = 4. The noise-free input v is four-
periodic with one period values (3.1, 4.3, 2.3, 3.5), which is
full rank. The actual input is uk = vk + εk , where {εk} is a
sequence of i.i.d. normal variables with mean zero and variance
σ2

ε = 1.
For n = 3, define Ỹj = [y4(j−1)+1 , . . . , y4j ]T ∈ R

4 , Φ̃j =
[φ4(j−1)+1 , . . . , φ4j ]T ∈ R

4×3 , D̃j = [d4(j−1)+1 , . . . , d4j ]T ∈
R

4 , S̃j = [s4(j−1)+1 , . . . , s4j ]T ∈ R
4 . It follows that Ỹj =

Φ̃j θ + D̃j , for j = 1, 2, . . . Since {D̃j} is a sequence of i.i.d
normal variable vectors, we have ξ̃N = 1

N

∑N
j=1 S̃j → F(ΨΘ).

Since v is full rank, Ψ is invertible. If Ψ is known, by the con-
tinuity of F and G, an estimate of θ can be constructed as
(Ψ)−1G(ξ̃N ) → Θ w.p.1. Due to the input measure noise, Ψ is
not measured directly. What we can use is Ψ̃w

N . Theorem 6 con-
firms that ΘN = (Ψ

w
N )−1G(ξ̃N ) will be a consistent estimate

of Θ.
Set initial conditions as ξ̃1 = S̃1 = [1, 1, 1, 1]T , Ψ̃1 = Φ̃1 ,

and Θ1 = 0. We construct a causal and recursive algorithm as
in Section VI-B. The relative estimation error ‖ΘN − Θ‖/‖Θ‖
is used to evaluate accuracy and convergence of the estimates.
Fig. 5 shows that ΘN converges to the true parameters Θ =
[C, θT ]T .

Fig. 5. Recursive algorithm to estimate the parameters when C is unknown.

Example 5: When the noise distribution function is unknown,
joint identification is used to estimate jointly the system param-
eters and noise distribution function. Consider a gain system
(n = 1): yk = auk + dk , where the true value a = 2, and {dk}
is a sequence of i.i.d. normal variables. The sensor has threshold
C = 12. Let F0(x) be the normal distribution function of zero
mean and variance 1, and G0(x) be the inverse of F0(x). Then
the distribution function of dk is F (x; [µ, σ]) = F0((x − µ)/σ).

Let µ = 3 be given, and the true value of variance σ = 3. By
Example 3, if µ is known, F (x; [µ, σ]) is jointly identifiable. Let
v = 4. For k = 1, 2, . . ., the scaled input is defined as u2k−1 =
v; u2k = qv, where q = 1.05. It is easy to verify that u is an
exponentially scaled full rank signal (Definition 5). Set U =
[4, 4.2]T and ξN = [ 1

N

∑N
i=1 s2i−1 ,

1
N

∑N
i=1 s2i ]T .

Then, ξN → ξ w.p.1. and G0(ξN ) → [(C − µ)I2 − aU ]/σ.
Since F (x, α) is jointly identifiable, we obtain the estimates of a
and σ: [âN , σ̂N ]T = [U,G0(ξN )]−1 [8, 8]T . Fig. 6 illustrates that
the estimated values of the system parameter and distribution
function parameter converge to the actual ones.

IX. FURTHER REMARKS

A. Extensions

Rational models: We now summarize some results from [32]
that show input conditions ensuring strong convergence of pa-
rameter estimates for rational systems. Consider the follow-
ing system yk = G(q)uk + dk , where G(q) is a stable ratio-
nal transfer function of q, G(q) = B (q)

1−A(q) = b1 q+ ···+bn qn

1−(a1 q+ ···+an qn ) .

The parameters θ = [a1 , . . . , an , b1 , . . . , bn ]T need to be iden-
tified. Suppose that uk is 2n-periodic and the observation
length N = 2nL for some positive integer L. Then the noise-
free system output xk = G(q)uk is also 2n-periodic, after a
short transient period. Hence, for some unknown real num-
bers cj , j = 1, . . . , 2n, xj = cj , j = 1, . . . , 2n, xj+2ln = xj ,
for any positive integer l. Then, for a given j ∈ {1, . . . , 2n},
yj+2ln = cj + dj+2ln , l = 0, 1, . . . , L − 1. Here, we need to
identify cj .
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Fig. 6. Joint identification of system parameter a and distribution function
parameter σ.

Next, we establish a mapping from [c1 , . . . , c2n ] to
θ = [a1 , . . . , an , b1 , . . . , bn ]T . Recall that xk = G(q)uk =

b1 q+ ···+bn qn

1−(a1 q+ ···+an qn ) uk , or in a regression form xk = φT
k θ, k =

1, . . . , N , where φT
k = [xk−1 , . . . , xk−n , uk−1 , . . . , uk−n ], and

θ = [a1 , . . . , an , b1 , . . . , bn ]T . For any starting time k0 , define
Φ = [φk0 , . . . , φk0 +2n−1 ]T and X = [xk0 , . . . , xk0 +2n−1 ]T .
Then, X = Φθ. Apparently, if Φ is invertible, θ = Φ−1X de-
fines a mapping from [c1 , . . . , c2n ] to θ. Consequently, the iden-
tification of θ is reduced to that of [c1 , . . . , c2n ]. Moreover,
identifying the rational transfer function can now be reduced
to identifying the set of gains. In the following theorem, State-
ments i) and ii) are in [32, Th. 2], and Statement iii) is in [32,
Th. 3]. Statement iv) is new, whose proof is omitted since it is
similar to that of Theorem 1.

Theorem 10: Suppose that the pair D(q) = 1 − A(q) and
B(q) are coprime polynomials, i.e., they do not have common
roots. If uk is 2n-periodic and full rank, then

i) Φ is invertible for all k0 ;
ii) ‖Φ−1‖s is independent of k0 , where ‖ · ‖s is the largest

singular value;

iii) uk is sufficiently rich for identifying θ;
iv) If uk is 2n periodic but not full rank, then it is not suffi-

ciently rich for identifying θ.
Correlated noises: Up until now, we have assumed the noise

{dk} to be uncorrelated. This condition can be much weakened.
In fact, the i.i.d. condition is mainly for convenience and no-
tational simplicity. Under this condition, we have highlighted
the main issues in the input design for binary-valued output ob-
servations without undue technical complication. To illustrate,
let us suppose that there is a sequence {ϑk} of i.i.d. normal
random variables with mean zero and variance σ2 such that
dk =

∑p
i=0 ciϑk−i , a moving average process. Then, it is easily

seen that dk is still a normal random variable with mean zero
and variance

∑p
i=0 c2

i σ
2 . If ek has a common distribution func-

tion F (·), then dk has a distribution function F (x/
√∑p

i=0 c2
i ).

That is, only the scale is changed. All previous discussions still
carry over.

The moving average processes present a scenario of finitely
correlated noise. Next, in lieu of the finite correlated noise,
if dk is a φ-mixing sequence, which assumes the remote past
and distant future being asymptotically independent, then as
pointed out in Section V-B, it is well-known that the sequence
is strongly ergodic (see [17, p. 488]). Thus the limit of the
empirical measures as well as the centered and scaled sequence
of errors leading to the Brownian bridge limit still hold [2].
As a result, we can push the envelop to include such infinitely
corrected noises for the input designs with binary-valued output.

B. Concluding Remarks

Conditions and input signal designs for system identification
using binary-valued observations are developed for different
system configurations (open- and closed-loop systems), scenar-
ios of noises (input measurement noise, input actuator noise, and
output noise), structural uncertainties (unknown sensor thresh-
old), and noise distributional uncertainty (unknown distribution
functions). The concept of sufficient richness conditions is intro-
duced to capture the essential requirements on input signals for
consistent estimation in these circumstances. There are many
potential extensions of the results in this paper. For example,
when system models contain unmodeled dynamics, sufficient
richness conditions will become more involved. These issues
will be reported elsewhere.
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